简单介绍下相关的天文知识

关灯护眼    字体:

上一章 目 录 下一章

【告知书友,时代在变化,免费站点难以长存,手机app多书源站点切换看书大势所趋,站长给你推荐的这个换源APP,听书音色多、换源、找书都好使!】

主要介绍一下白矮星\红巨星\中子星\黑洞这四种天体.希望大家看了后,能对大家的阅读产生一定的帮助.

白矮星是一种很特殊的天体,它的体积小、亮度低,但质量大、密度极高。比如天狼星伴星(它是最早被发现的白矮星),体积比地球大不了多少,但质量却和太阳差不多!也就是说,它的密度在1000万吨/立方米左右。

根据白矮星的半径和质量,可以算出它的表面重力等于地球表面的1000万-10亿倍。在这样高的压力下,任何物体都已不复存在,连原子都被压碎了:电子脱离了原子轨道变为自由电子。

白矮星是一种晚期的恒星。根据现代恒星演化理论,白矮星是在红巨星的中心形成的。

当红巨星的外部区域迅速膨胀时,氦核受反作用力却强烈向内收缩,被压缩的物质不断变热,最终内核温度将超过一亿度,于是氦开始聚变成碳。

经过几百万年,氦核燃烧殆尽,现在恒星的结构组成已经不那么简单了:外壳仍然是以氢为主的混和物;而在它下面有一个氦层,氦层内部还埋有一个碳球。核反应过程变得更加复杂,中心附近的温度继续上升,最终使碳转变为其他元素。

与此同时,红巨星外部开始发生不稳定的脉动振荡:恒星半径时而变大,时而又缩小,稳定的主星序恒星变为极不稳定的巨大火球,火球内部的核反应也越来越趋于不稳定,忽而强烈,忽而微弱。此时的恒星内部核心实际上密度已经增大到每立方厘米十吨左右,我们可以说,此时,在红巨星内部,已经诞生了一颗白矮星。

白矮星的密度为什么这样大呢?

我们知道,原子是由原子核和电子组成的,原子的质量绝大部分集中在原子核上,而原子核的体积很小。比如氢原子的半径为一亿分之一厘米,而氢原子核的半径只有十万亿分之一厘米。假如核的大小象一颗玻璃球,则电子轨道将在两公里以外。

而在巨大的压力之下,电子将脱离原子核,成自由电子。这种自由电子气体将尽可能地占据原子核之间的空隙,从而使单位空间内包含的物质也将大大增多,密度大大提高了。形象地说,这时原子核是“沉浸于”电子中。

一般把物质的这种状态叫做“简并态”。简并电子气体压力与白矮星强大的重力平衡,维持着白矮星的稳定。顺便提一下,当白矮星质量进一步增大,简并电子气体压力就有可能抵抗不住自身的引力收缩,白矮星还会坍缩成密度更高的天体:中子星或黑洞。

对单星系统而言,由于没有热核反应来提供能量,白矮星在发出光热的同时,也以同样的速度冷却着。经过一百亿年的漫长岁月,年老的白矮星将渐渐停止辐射而死去。它的躯体变成一个比钻石还硬的巨大晶体——黑矮星而永存。

而对于多星系统,白矮星的演化过程则有可能被改变。(

如果你为白矮星的巨大密度而惊叹不已的话,这里还有让你更惊讶的呢!我们将在这里介绍一种密度更大的恒星:中子星。

中子星的密度为10的11次方千克/立方厘米,也就是每立方厘米的质量竟为一亿吨之巨!对比起白矮星的几十吨/立方厘米,后者似乎又不值一提了。事实上,中子星的质量是如此之大,半径十公里的中子星的质量就与太阳的质量相当了。

同白矮星一样,中子星是处于演化后期的恒星,它也是在老年恒星的中心形成的。只不过能够形成中子星的恒星,其质量更大罢了。根据科学家的计算,当老年恒星的质量大于十个太阳的质量时,它就有可能最后变为一颗中子星,而质量小于十个太阳的恒星往往只能变化为一颗白矮星。

但是,中子星与白矮星的区别,决不只是生成它们的恒星质量不同。它们的物质存在状态是完全不同的。

简单地说,白矮星的密度虽然大,但还在正常物质结构能达到的最大密度范围内:电子还是电子,原子核还是原子核。而在中子星里,压力是如此之大,白矮星中的简并电子压再也承受不起了:电子被压缩到原子核中,同质子中和为中子,使原子变得仅由中子组成。而整个中子星就是由这样的原子核紧挨在一起形成的。可以这样说,中子星就是一个巨大的原子核。中子星的密度就是原子核的密度。

在形成的过程方面,中子星同白矮星是非常类似的。当恒星外壳向外膨胀时,它的核受反作用力而收缩。核在巨大的压力和由此产生的高温下发生一系列复杂的物理变化,最后形成一颗中子星内核。而整个恒星将以一次极为壮观的爆炸来了结自己的生命。这就是天中著名的“超新星爆发”。

“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。

等恒星的半径小到一特定值(天上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。

那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。

我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。

在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。

更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!

“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。

当一颗恒星度过它漫长的青壮年期——主序星阶段,步入老年期时,它将首先变为一颗红巨星。

称它为“巨星”,是突出它的体积巨大。在巨星阶段,恒星的体积将膨胀到十亿倍之多。

称它为“红”巨星,是因为在这恒星迅速膨胀的同时,它的外表面离中心越来越远,所以温度将随之而降低,发出的光也就越来越偏红。不过,虽然温度降低了一些,可红巨星的体积是如此之大,它的光度也变得很大,极为明亮。肉眼看到的最亮的星中,许多都是红巨星。

在赫-罗图中,红巨星分布在主星序区的右上方的一个相当密集的区域内,差不多呈水平走向。

我们来较详细地看看红巨星的形成。我们已经知道,恒星依靠其内部的热核聚变而熊熊燃烧着。核聚变的结果,是把每四个氢原子核结合成一个氦原子核,并释放出大量的原子能,形成辐射压。

处于主星序阶段的恒星,核聚变主要在它的中心(核心)部分发生。辐射压与它自身收缩的引力相平衡。

氢的燃烧消耗极快,中心形成氦核并且不断增大。随着时间的延长,氦核周围的氢越来越少,中心核产生的能量已经不足以维持其辐射,于是平衡被打破,引力占了上风。有着氦核和氢外壳的恒星在引力作用下收缩,使其密度、压强和温度都升高。氢的燃烧向氦核周围的一个壳层里推进。

这以后恒星演化的过程是:内核收缩、外壳膨胀——燃烧壳层内部的氦核向内收缩并变热,而其恒星外壳则向外膨胀并不断变冷,表面温度大大降低。这个过程仅仅持续了数十万年,这颗恒星在迅速膨胀中变为红巨星。

红巨星一旦形成,就朝恒星的下一阶段——白矮星进发。当外部区域迅速膨胀时,氦核受反作用力却强烈向内收缩,被压缩的物质不断变热,最终内核温度将超过一亿度,点燃氦聚变。最后的结局将在中心形成一颗白矮星。(未完待续)

【告知书友,时代在变化,免费站点难以长存,手机app多书源站点切换看书大势所趋,站长给你推荐的这个换源APP,听书音色多、换源、找书都好使!】
章节报错

上一章 目 录 加入书签 下一章

热门推荐: 修罗武神 我有一剑 万相之王 从大学讲师到首席院士 陆地键仙 人族镇守使 从长津湖开始 我只想安静的做个苟道中人 星汉灿烂 从木叶开始逃亡
相关推荐:极天圣典狼烟起万里时间的勇者元灵争霸帝道异界行顶级杀手异界行狐妃倾城:王爷每天喜当爹绝色狐妃农门家主之四姑娘破妄之瞳